7^2+x^2=16^2

Simple and best practice solution for 7^2+x^2=16^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7^2+x^2=16^2 equation:



7^2+x^2=16^2
We move all terms to the left:
7^2+x^2-(16^2)=0
We add all the numbers together, and all the variables
x^2-207=0
a = 1; b = 0; c = -207;
Δ = b2-4ac
Δ = 02-4·1·(-207)
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{23}}{2*1}=\frac{0-6\sqrt{23}}{2} =-\frac{6\sqrt{23}}{2} =-3\sqrt{23} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{23}}{2*1}=\frac{0+6\sqrt{23}}{2} =\frac{6\sqrt{23}}{2} =3\sqrt{23} $

See similar equations:

| 8x+0.18x=10x+0.09x | | 2a-7=a+17 | | t9=14 | | 1+4r+7r=-10 | | 4x+11=5x-20 | | 3r=669 | | 4x-(5-2x)=3x-5 | | 10^2+x^2=13^2 | | ((4t-3)/(5))-((4-2t)/(3))=1 | | 2x-9(8.5)=-25 | | 5a+55+2a+27=180 | | c+22-18=100 | | (4t-3)/(5)-(4-2t)/(3)=1 | | 2a+26=56 | | 168/x=100 | | 13x+42+13x+64+17x+82=360 | | 42=7+u/5 | | 12^2+x^2=16^2 | | -2x+17=5x-20 | | 1/2(x-8)=5x+7 | | 4.5+10m=6.14 | | 140=n−19 | | x+89+91+2x=360 | | -5x-6=-x+10 | | c/18=25 | | x+30+x+79+56+3x=360 | | 4k-3=-63 | | 16+y=-16 | | -102=6r | | c18=25 | | x+x+18+4x-9+4x-9=360 | | -9=-9+k/8 |

Equations solver categories